Acoustic Bird Activity Detection on Real-Field Data

نویسندگان

  • Todor Ganchev
  • Iosif Mporas
  • Olaf Jahn
  • Klaus Riede
  • Karl-L. Schuchmann
  • Nikos Fakotakis
چکیده

We report on a research effort aiming at the development of an acoustic bird activity detector (ABAD), which plays an important role for automating traditional biodiversity assessment studies – presently performed by human experts. The proposed on-line ABAD is considered an integral part of an automated system for acoustic identification of bird species, which is currently under development. In particular, taking advantage of real-field audio recordings collected in the Hymettus Mountains east of Athens, we investigate the applicability of various machine learning techniques for the needs of our ABAD, which is intended to run on a mobile device. Performance is reported in terms of recognition accuracy on audio-frame level, due to the restrictions imposed by the requirement of run-time decision making with limited memory and energy resources. We report recognition accuracy of approximately 86% on a frame level, which is quite promising and encourages further research efforts in that direction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Networks tag the location of bird vocalisations on audio spectrograms

This work focuses on reliable detection and segmentation of bird vocalizations as recorded in the open field. Acoustic detection of avian sounds can be used for the automatized monitoring of multiple bird taxa and querying in long-term recordings for species of interest. These tasks are tackled in this work, by suggesting two approaches: A) First, DenseNets are applied to weekly labeled data to...

متن کامل

Deep learning for detection of bird vocalisations

This work focuses on reliable detection of bird sound emissions as recorded in the open field. Acoustic detection of avian sounds can be used for the automatized monitoring of multiple bird taxa and querying in long-term recordings for species of interest for researchers, conservation practitioners, and decision makers. Recordings in the wild can be very noisy due to the exposure of the microph...

متن کامل

Recognition of Multiple Bird Species Based on Penalised Maximum Likelihood and HMM-Based Modelling of Individual Vocalisation Elements

This paper presents an extension of our recent work on recognition of multiple bird species from their vocalisations by incorporating an improved acoustic modelling. The acoustic scene is segmented into spectro-temporal isolated segments by employing a sinusoidal detection algorithm, which is able to handle multiple simultaneous bird vocalisations. Each segment is represented as a temporal sequ...

متن کامل

Detecting bird sound in unknown acoustic background using crowdsourced training data

Biodiversity monitoring using audio recordings is achievable at a truly global scale via large-scale deployment of inexpensive, unattended recording stations or by large-scale crowdsourcing using recording and species recognition on mobile devices. The ability, however, to reliably identify vocalising animal species is limited by the fact that acoustic signatures of interest in such recordings ...

متن کامل

Detecting bird sounds in a complex acoustic environment and application to bioacoustic monitoring

Trends in bird population sizes are an important indicator in nature conservation but measuring such sizes is a very difficult, labour intensive process. Enormous progress in audio signal processing and pattern recognition in recent years makes it possible to incorporate automated methods into the detection of bird vocalisations. These methods can be employed to support the census of population...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012